An Elitist GRASP Metaheuristic for the Multi-objective Quadratic Assignment Problem
نویسندگان
چکیده
We propose an elitist Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic algorithm, called mGRASP/MH, for approximating the Pareto-optimal front in the multi-objective quadratic assignment problem (mQAP). The proposed algorithm is characterized by three features: elite greedy randomized construction, adaptation of search directions and cooperation between solutions. The approach builds starting solutions in a greedy fashion by using problem-specific information and elite solutions found previously. Also, mGRASP/MHmaintains a population of solutions, each associated with a search direction (i.e. weight vector). These search directions are adaptively changed during the search. Moreover, a cooperation mechanism is also implemented between the solutions found by different local search procedures in mGRASP/MH. Our experiments show that mGRASP/MH performs better or similarly to several other state-of-the-art multi-objective metaheuristic algorithms when solving benchmark mQAP instances.
منابع مشابه
A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملA hybrid metaheuristic for multiobjective unconstrained binary quadratic programming
The conventional Unconstrained Binary Quadratic Programming (UBQP) problem is known to be a unified modeling and solution framework for many combinatorial optimization problems. This paper extends the single-objective UBQP to the multiobjective case (mUBQP) where multiple objectives are to be optimized simultaneously. We propose a hybrid metaheuristic which combines an elitist evolutionary mult...
متن کاملA Grasp for Job Shop Scheduling
In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is characterized by a fixed order of operations, each of which is to be processed on a specific machine for a specified duration. Each machine can process at most one job at a time and once a job initiates processing on a given machine it must complete processing uninterrupted. A sc...
متن کاملA Greedy Randomized Adaptive Search Procedure for Job Shop Scheduling
In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is characterized by a fixed order of operations, each of which is to be processed on a specific machine for a specified duration. Each machine can process at most one job at a time and once a job initiates processing on a given machine it must complete processing uninterrupted. A sc...
متن کاملUsing Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009